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Fermi Substructure of Space-Time 
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If space-time possesses a Fermi substructure, then the canonical quantization of  
the space-time and the Fermi coordinates of a relativistic point particle must be 
mutually consistent. We show that the Fermi substructure x ~ = �88 C *B} 
meets this requirement. We express the generators of the Lorentz group in terms of  
the Fermi coordinates and momenta and consider their coordinate representation. 

1. CANONICAL EQUATIONS 

Penrose (1967) pointed out that there is evidence of a direct connection 
between quantum mechanics and the structure of space-time, for example, 
in the elementary fact that different spatial directions of the spin of a spin- 
one-half particle correspond to taking different complex linear combinations 
of the two quantum states. 

Considerations like these naturally raise the question as to whether space- 
time possesses a complex substructure which reflects the complex properties 
of both the Lorentz group and quantum mechanics. We would expect such 
a complex substructure to be associated with a Fermi system. Fermi substruc- 
tures of space-time have been discussed in Schwarz and Van Nieuwenhuizen 
(1982) and Borchsenius (1987, 1989). In the following we suggest that the 
canonical quantization of a relativistic point particle can be used as a model 
to determine a Fermi substructure of space-time. 

Following Dirac (1950, 1958), we take the space-time coordinates of the 
particle to be functions of a parameter, time, and quantize them according to 

x ~ ----> X ~, X ~* = X ~ (1) 

The canonical momenta P~ are defined through the Lagrangian 
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8L = P~ 8.if~ (2) 

and X and P satisfy the commutation relations 

[X', P,,] = ihS~ (3a) 

[X ~, X "] = 0, [P~, P~] = 0 (3b) 

If the space-time coordinates arise from underlying Fermi coordinates, then 
the quantization (1) must result from a corresponding quantization of these. 
The simplest representation of the canonical Fermi coordinates, and the one 
which we shall consider here, has components C A which transform like a 
right-handed two-component spinor in the index A and like a quantum ket 
vector in the index a. To distinguish C A from a quantum operator, we shall 
write it in abstract form as C A, and its conjugate bra vector as C tA. Since 
the quantum vectors which we consider have noncommutative components, 
we shall need to form commutators between them. The anticommutators 
between a ket vector X and a bra vector r will be defined as 

def 
{X, ~t}ab = X a ~  + t~Xa (4a) 

def 
{apt, X} = ~*X~ + X~* (4b) 

that is, we adopt the convention that the order in which the bra and ket 
vectors are written in the commutator determines whether both terms in the 
commutator are direct products or contractions. 

C a is accompanied by conjugate momenta DtA defined through the 
Lagrangian: 

8 Tr L = {DA t, ~ c A }  _{_ C.C. (5) 

Corresponding to the space-time canonical system (3) we shall assume that 
C and D t satisfy the canonical anticommutation relations 

{C A, D~}8~ - {D~, CtE}~ a = 2 i h 8 ~  (6a) 

{C A, C 8} = 0 (6b) 

{ DA t, D~ } = 0 (6c) 

We seek a relationship between the X and the C which will make the Fermi 
system (6) consistent with the space-time system (3). We shall show that if 
the space-time coordinates are determined by the Fermi coordinates through 
the relation 
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X~ : 1 o '~{C A, Ct~}, {C A, C B} = 0 (7) 

then the Fermi system (6) is a consequence of the space-time system (3). By 
differentiating (7) we obtain for the variation of .~ with respect to I~ 

~x~ = ~ + {c  ~, ~C*~}) (8) 

When applied to the trace of (2) this gives 

Tr L = v s o ~  -~, + c.c. (9) 

When compared to (5) this yields the expression 

1 
D~ = ~ cr~oCt~ (10) 

for the Fermi momenta. To show that (6) follows from (3), we first observe 
that the anticommutativity (6b) of the Fermi coordinates is contained in the 
defining relation (7). The anticommutativity (6c) of the Fermi momenta 
follows directly from the anticommutativity of the C because in the expression 
(10) for D + the matrix elements of  P~ are commutative complex numbers. 
To show that (6a) is a consequence of (3a), we shall express the 1.h.s. of  
(6a) in terms of X and P. To do this, we first rewrite (6a) in the more 
convenient form 

{C A, D~}Cr~ECrA~E {Ds, t ~ * A ~ - - S E - - ~  = 4 i h S ~  (11) - -  . . .  j u  a u a E  

The anticommutator {C, D*} can be expressed in terms of X and P by 
inserting the expression (10) for D* and applying the defining relation (7) 

{ C  A , D ~ }  = A 1 ~, ,o {C ,-~Y~DC P~} 

- -  1 ~ 1  ~ ~ A D V v D  ~-,_,sOu ~, ,,~ . ~  (12) 

Using the property of the Pauli matrices 

o'~%-~StrcDtrA~D = 2(8~8~ + ~ -- ~q~q,~) (13) 

(12) yields the remarkably simple expression for the l.h.s, of (11) 

{ C A, D~ } cr~t~rA~E -- { DB, C *A } {Y~E~A~E 

= (8~8~ + ~ - -q~-q,~,)[X ~, P~] (14) 

Inserting the expression for [X, P] in (3a) into the r.h.s, of (14), we obtain 
(11) and thereby (6a). [] 
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A Hamiltonian H can be defined from the constraint which is associated 
with the free choice of parameter, time (Dirac, 1950, 1958). X r~ and P~ then 
satisfy the equations of motion 

1 1 
X~ = ~-~ [X w, H], Pw = ~-~ [P~, H] (15) 

Applying these equations to (7) and (10), we find the equations of motion 
for the Fermi canonical variables 

ca= 1 HCA, [)A = 1 -i-h - ~  HDA (16) 

(6) and (16) together constitute the Fermi canonical system. 
If the Fermi substructure is to reproduce all of space-time, (7) must not 

impose any constraint on X~' apart of course from Hermicity. To prove that 
any Hermitian X ~ can be expressed in the form (7), we consider an arbitrary 
Hermitian matrix with the components Mnm. Such a matrix can be expressed 
in the form 

Mrs = Lrt~.tt* (17) 

where the eigenvalues k can be normalized to any of the values - 1, O, 1 by 
a rescaling of L. Consider the complex Clifford algebra 

{e,, e*} = ~r~s)k(.~), {er, e,} = 0 (18) 

where the k's are the same as in (17). When the k's contain all three values 
- 1, 0, 1, the algebra is called indefinite and degenerate. Define the elements 

ar = Lrtet (19) 

where L is the same as in (17). Then it follows that M can be written as 

Mrs = {a,  a*}, {ar, as} = 0 (20) 

To apply this general result to X*', we observe that the spinorial components 
of X ~ satisfy 

def 
( X a b  :g _~_ Xba,BA S a  bAB = c~X~b (21) 

and therefore can be considered as the components of a Hermitian matrix in 
the combined indices (A, a) and (B, b). Hence, according to the general result 
(20), xaA~ Can be expressed in the form 

XaABb - -  I ',4 ,A -~ -{C~,  c~'B}, {C~, C B} = 0 (22) 

These equations are equivalent to (7), provided the quantum conjugation t 
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performs the complex involution * of the Clifford algebra to which the C A 
belong. 

In the classical limit, (7) reduce to 

1 
x ~ = ~ CrA~8{C A, C'a}, {C A, C 8} = 0 (23) 

which defines the Fermi substructure of space-time itself. Since the commuta- 
tion properties of the c's arise from quantum mechanics, we can say that, 
given the model discussed here, space-time is not merely a background 
space for quantum mechanics, but is itself a by-product of an underlying 
quantum structure. 

2. INTERPRETATION OF THE QUANTUM AMPLITUDES 

To understand the significance of the Fermi coordinates for the relation- 
ship between the complex properties of the Lorentz group and quantum 
mechanics, we shall consider the expectation values of X and C. 

First we express X and C in terms of the eigenstates of X: 

X p~ = X(rlX))X(rlX)<X (Ix) ] (24a) 

def 
C A = X~r)C~r, C~r ~- ~X~r[C a (24b) 

where x~ are the eigenvalues of X ~. By inserting (24) into (7) we find that 
# satisfy 

1 
X~r = "~ O'~B{ 4r)  , C~r~} (25) 

A comparison of (25) with (23) shows that ~ are the Fermi coordinates 
corresponding to xL 

From (7) we obtain the expression for the expectation values 2 ~ of X ~ 

1 
.~ tz = <sI XI~I s ) : "~ O'~B{<s[C A, ctB[s)} (26) 

Defining 

we can write (26) as 

def 
-~A = < s i c  A (27) 

1 

Hence ~A 

(28) 

are the Fermi coordinates corresponding to ~ .  We shall call them 
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the expectation values of C A. By inserting (24) into the r.h.s, of (26) and 
(27) we obtain the expressions 

= I<slx(r )>12x'  ) (29a) 

~a = ~SlX~)C0r (29b )  

for the expectation values of X and C in terms of the coordinate values which 
can result from a measurement. 

Expression (29) shows that there is a parallel between the Fermi coordi- 
nates as a complex substructure of the space-time coordinates and the ampli- 
tudes as a complex "substructure" of the probabilities. 

Expression (29b) leads to an interpretation of the quantum amplitudes as 
the complex weights with which the individual Fermi coordinates contribute to 
the expectation values ya. Since the Fermi coordinates owe their complexity 
to SL(2.C), the complex property of the amplitudes is hereby being related 
to the structure of space-time. 

3. FERMI FORM OF THE LORENTZ GENERATORS 

The generators 

L ~  = X~Pt, - X~P. (30) 

of the Lorentz group form a skew-symmetric tensor and are therefore equiva- 
lent to a symmetric second-rank spinor ~-AB, 

LABCO = ezch~O + eBDkAC, 
def 

LABCD = O'~BO'~oL~v (31)  

hA C 1 ~B/)r = ~ I-~ABCD 

where 

(32) 

~.ac satisfies an SU(2) algebra and is the spinor form of the well-known non- 
Hermitian combination of the rotation and boost generators which is used to 
label the representations of the Lorentz group. 

From (32) and (12) we obtain the expression 

~kAB : {CA, D~} + {C8, DA t } 

for ~A8 in terms of the Fermi coordinates and 
representation 

(33) 

momenta. When the 

X ~ --~ x ~, P~ -~ -ihO~ (34) 

is inserted into the r.h.s, of (32) we obtain, after a rearrangement which 
makes use of (23), 
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~kAB ~ {CA, --+ ihc*E~r~EO~} + {ca, -�88 (35) 

A comparison of (35) with (33) shows that this representation can be obtained 
through the substitution 

C A ~ c A, D*A ~ --�88 (36) 

The Fermi expression (33) for the Lorentz generators invites consid- 
ering the existence of coordinate representations of half-integer spin states. 
To obtain such representations, the expression (36) for DA* must be generalized 
to act on functions of the Fermi coordinates which are not single-valued 
functions of the space-time coordinates. To this end we note that, according 
to (36), DA t acts as a generator of displacements of the Fermi coordinates 

~(x) = ~x~a~  
_ 1 

ih ({~cA' Wa(t~(X))} -- {~c .8, DB(t~(x))}) (37) 

The action of DA t on a general function of the Fermi coordinates should 
therefore be defined correspondingly through 

8+(c, c*) = - / ~  ({~c A, Dta(O(c, c*))} -- {~c *~, D~(O(c, c*))}) (38) 

With this generalized definition of D~(O), we find by use of (31) and (33) 
that the azimuthal rotations of the Fermi coordinates 

c ~ e-i'p/2~r3c (39) 

are generated by the z-component of the angular momentum operator 

1 
~+(c, c*) = - - ~  ~q~ Jz(t~(c, c*)) (40) 

Accordingly, Jz has the representation 

Jz = - i h  ~ (41) 

The condition for the eigenfunctions e im'P of Jz to be single-valued functions 
of the Fermi coordinates is that a rotation through an angle of 47r, which 
restores the value of c, must be a multiple of the period of e im~. This gives 

m = 0, +�89 ---1, •  . . . .  (42) 

The eigenfunctions corresponding to half-integer spin are seen to be double- 
valued functions of the space-time coordinates. As expected, these states 
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therefore have a coordinate representation only in terms of the Fermi 
coordinates. 

The double homomorphism between the groups SL(2.C) and SO(1.3) 
associated with the Fermi and space-time coordinates, respectively, implies 
that there would appear to be a twofold degeneracy in space-time when 
viewed from Fermi space. It is interesting to speculate as to whether this 
feature has any significance for the interpretation of quantum mechanics, in 
particular whether it can provide a basis for the so-called "double space- 
time" interpretation of quantum mechanics (Bialynicki-Birula, 1986). 
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